
DevOps Workshop
Part 2 coming soon!

Todayʼs Agenda
● What is DevOps?

● What is CI/CD?

● How to implement CI/CD using GitHub Actions?

● A brief introduction to Firebase

● And much more!

By the end of it, you’ll have your own “DevOps-ified “

React/ Firebase project!

You can then edit the React App’s code and turn it into

your own thing (ex. Personal website, etc.)

So, what is DevOps?

● Set of cultural philosophies, practices, and tools that

increases an organization’s ability to deliver applications

and services at high velocity

● Primarily through automating and streamlining

development and infrastructure management processes

Benefits of DevOps

● Speed/Agility

● Rapid Deployment

● Quality and reliability

● Improved Collaboration

● And much more!

DevOps Best Practices

● Continuous Integration

● Continuous Delivery

● Microservices

● Infrastructure as Code

● Monitoring and Logging

● Communication and Collaboration

DevOps Best Practices

● Continuous Integration

● Continuous Delivery

● Microservices

● Infrastructure as Code

● Monitoring and Logging

● Communication and Collaboration

Note: Continuous Integration + Continuous Delivery referred to as “CI/CD”

● Pipeline: set of automated processes

○ Ex. Automatically testing your code, and then automatically

deploying them

Example

Your banking App

$ git push

Does app display
correct output for
account balance?

yes

Deploy the changes internet
(whether that be on your own
servers,Google’s Firebase servers,
etc)

How do we automate this? Aka how do we
implement CI/CD for our app?

Testing

How do we automate this?

● We call this process of automating particular parts of software

development “continuous integration, continuous delivery, and

continuous deployment (CI/CD for short)”

How do we automate this?

● Software/tools that allow us to implement CI/CD are:

○ GitHub Actions

○ Travis CI

○ Jenkins

○ etc.

GitHub Actions

● Service created by GitHub that we can use for CI/CD

● GitHub Actions makes it easy to automate all your software

workflows

● You can configure a GitHub Actions workflow to be

triggered when something happens in your repository

○ Ex. on a push to the repo, on a merge between two

branches, on every pull request etc.

How Github Actions work
1. Create a file that tells GitHub Actions what to do

a. needs to be a .yaml file that is placed in the .github/workflows/

directory

b. This file needs to conforms to the specific GitHub Action syntax

2. Specify when we want this script to run (ex. On a push to the main branch

of your GitHub repository)

3. Specify what you want the script to do when it is triggered

4. When this trigger is set off, GitHub will run this script on their servers!

How Github Actions work (lower level)
1. We create a .github/workflows/<something>.yaml in the root level

of our github repository

2. We specify when we want this script to run (ex. On a push to the

main branch)

3. We can optionally define in some environment variables that will

be available to use by the server running the script

4. We specify what the script should do

5. This script then gets run on one of GitHub’s many servers

Example

myProject/.github/workflows/my-action.yaml

You can name this job whatever you want

You can name this job whatever you want

Define these ‘secrets’ in
your GitHub repos
Settings -> Secrets

Secrets are basically encrypted variables that you can define for your github actions
repo so you don’t have to hardcode them in to your (possibly) publicly viewable
script

Define these ‘secrets’ in
your GitHub repos
Settings -> Secrets
See here for details

Secrets are basically encrypted variables that you can define for your github actions
repo so you don’t have to hardcode them in to your (possibly) publicly viewable
script

https://docs.github.com/en/actions/security-guides/encrypted-secrets#creating-encrypted-secrets-for-a-repository

Define these ‘secrets’ in
your GitHub repos
Settings -> Secrets

● This is admittedly a pretty useless example of a
GitHub action (just writing some values to stdout)

● Later in the workshop we will see how we can
‘build’ a React app , test it, and deploy it to
Firebase.

Testing
● One action that is often included in CI/CD is automated testing

● Testing is important important

○ Frequent testing of your codebase allows your program to

be less prone to errors

○ This allows checking to make sure a new block of code

doesn’t break the previously written code

○ etc

Manual Testing

● This is done by a person (tester) without

using any automated tools

● This is often very expensive and time

consuming for a company

● Prone to human errors

● Any new application must be manually

tested before its testing can be

automated.

Automated Testing
● Done by a computer

● Extremely inexpensive and quick to run

■ Development of good tests suites can take time though!

● Might not be able to test certain things as well as a person

though

■ Ex. If your website has a lot of animations and want to test

to see if all of them look ok, you’re likely better off with

manual testing

Automated Testing: Types of Tests
● Unit Tests

○ Testing small ‘units’ of an application individually

○ For example, testing individual methods, functions, components or

modules

● Integration tests

○ Testing to see if your modules/components/functions/etc work

together

● Several other types of tests can be found here

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

Examples of each
● both doors likely work

individually (would be

verified by a unit test)

● but they clearly do

not work together

(would be verified by

a integration test)

Unit vs Integration Example

Letʼs see how tests look like in React!

Moving onto Firebase

Wait, whatʼs Firebase?

● Firebase is a platform developed by Google for creating mobile and web

applications.

● It abstracts away a lot of backend development for you

○ ex. you can get a website up and running with a single click without

having to do any back-end work

○ simplifies setting up and connecting your app to a database (called

Firestore)

○ Simplifies Authentication

○ And much more!

Firebase intro continued..

● We will just be focusing on the “web hosting” portion of

Firebase for this workshop

● Please let us know if you’d like to see a dedicated workshop on

Firebase!

● Let’s create a new firebase project!

Deploying React app on Firebase (~3 min)
1. FORK this repository (aka created your own copy of it) and

clone this forked repo onto your computer.

2. cd <name of this directory>

3. npm install firebase-tools -g

4. firebase login

a. Logs you in with your google account using the CLI

5. firebase init

a. Will prompt you with several questions (I’ll show you what

to select in next slide)

https://github.com/UTM-GDSC/-devops-part-1

Answer the firebase init prompts as follows:

● Which Firebase CLI features do you want to set up for this folder?

→ Configure and deploy Firebase Hosting sites

● What project do you want to use? -> Use existing

○ And then select the project you just created

● What to use as public directory? → build

● Configure as single page app? -> Yes

● Set up automatic builds and deploys with GitHub? -> No

● Overwrite index.html? -> No

Firebase-ify an existing React project

build

Firebase-ify an existing React project

Firebase init result
○ You should see that firebase created some new files and directories

○ firebase json:

■ where you can specify various hosting rules for your app (ex. where

should firebase find all the files it will server users?)

○ .firebaserc:

■ - a file that contains info to identify your firebase project

Firebase init result
● To serve your project locally (through a web server running locally that listens

to port 5000 by default)

● npm install && npm run build (if you haven’t already)

● Followed by, firebase serve

● Note: only for windows users, please remove the “CI=false &&” part from line

17 of package.json if you want to run it locally. IMPORTANT: add it back once

you are ready to setup github actions for it.

● Note: if you get an 403 error when visiting localhost:5000,

Do this instead: firebase serve -o 0.0.0.0

Letʼs deploy to firebase
➔ Just execute the command (assuming you have ran npm run

build beforehand):

→ firebase deploy

● URL of your app will be outputted to you

● App is now live on the internet!

● Really easy, right?

Letʼs automate this with GitHub Actions!

Let’s head over to my computer!

For those revisiting the slides afterwards, the finished

GitHub actions file is here

https://github.com/UTM-GDSC/-devops-part-1/blob/main/.github/workflows/deploy.yml

Letʼs deploy to firebase (~1min)
● First thing we need is a “Firebase CI Token” to basically

authorize GitHub Actions to be able to interact with our

Firebase Project

● Run the following command in your terminal:

● firebase login:ci

This will prompt you to sign in using your browser and if successful

it will output a token in your terminal

Deploying to firebase cntd. (~2min)
● Follow these steps to add this token

as a ‘secret’ in your repository

○ Just think of a ‘secret’ as a

safe, secure variable that your

GitHub actions script can use

● To follow along with me (or to get

the finished GitHub Action file

working), name this secret

DEVOPS_1_FIREBASE_TOKEN

(I’ll explain why later)

Deploying to firebase ctnd

● Here is an example of how you can access it in your GitHub

Actions script

● NEVER REVEAL THIS TOKEN PUBLICALLY (ex. Don’t hardcode

the actual value of the token in your github actions script)

Deploying to firebase ctnd
Let’s go over and explain what is happening in the deploy.yaml

script found here (don’t worry, the finished script is already on your

computer if you forked the workshop GitHub repository 😄)

https://github.com/UTM-GDSC/-devops-part-1/blob/main/.github/workflows/deploy.yml

GitHub Actions config

GitHub Actions config
● If you got everything done up to this point, try making a change

to the React code and pushing it to the repo (careful! Your

changes might break the automated tests I set up 😄 Try just

adding <h1>hello</h1> somewhere (that shouldn’t break

anything :)))

● If you click the “Actions” tab in the repository you should see

the Action running!

A final note
● You can run workflows manually by clicking “run workflow as

seen below

Thank you!
Any questions?

We have a React App

Create a firebase project

“Firebase-ify” our React project

We can deploy it manually by typing in: firebase deploy

We created a CI/CD pipeline using GitHub actions:
(Writing a script that GitHub ran on its servers)
THIS RAN ON EACH PUSH TO THE MAIN BRANCH IN OUR
GITHUB REPOSITORY

● Installed dependencies for the react app, Built the react
app, ran the tests

○ If any of the tests failed, the GitHub action would
stop running and tell us that something went wrong

● Deploy the firebase app to the internet

